Thursday, November 19, 2015

K-means clustering with Python


K-means is one of the simplest unsupervised learning algorithms that solve the well known clustering problem. The procedure follows a simple and easy way to classify a given data set through a certain K number of clusters. The main idea is to define K centroids, one for each cluster. The next step is to take each point belonging to a given data set and associate it to the nearest centroid. At this point we need to re-calculate K new centroids of the clusters resulting from the previous step. After we have these K new centroids, a new binding has to be done between the same data set points and the nearest new centroid. As a result of this loop we may notice that the K centroids change their location step by step until no more changes are done.


Scikit-learn provides with full implementation of K-means algorithm though KMeans class. Let's have a look at several interesting situations, which might occur during data clustering:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

plt.figure(figsize=(12, 12))

n_samples = 1500
random_state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state)

# Incorrect number of clusters
y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title("Incorrect Number of Blobs")

# Anisotropicly distributed data
transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]]
X_aniso =, transformation)
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)

plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)
plt.title("Anisotropicly Distributed Blobs")

# Different variance
X_varied, y_varied = make_blobs(n_samples=n_samples,
                                cluster_std=[1.0, 2.5, 0.5],
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)

plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)
plt.title("Unequal Variance")

# Unevenly sized blobs
X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered)

plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred)
plt.title("Unevenly Sized Blobs")

At first we wrongly assume that there are 3 clusters in the data and make K-means find them. Later we transform the data anisotropicly. Since K-means uses Euclidian distance to to associate points to clusters, it does not work well with non-globular clusters. The last two datasets introduce blobs of different variance and size, but this makes no difference and the classification succeeds.


K-means provides us with easy to use clustering algorithms. It's fast, easy to follow and is used vastly in various fields including Vector Quantization.